Crash-Starting the Simplex Method

Ivet Galabova Julian Hall

School of Mathematics, University of Edinburgh

Optimization Methods and Software

December 2017

A linear programming problem is

$$\begin{array}{ll} \min \quad \mathbf{c}^{\mathcal{T}}\mathbf{x} \\ \text{s.t.} \quad A\mathbf{x} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{array}$$

$$\mathbf{x}^0 \xrightarrow{\operatorname{Crash}} \mathbf{x}^k \xrightarrow{\operatorname{Crossover}} \mathbf{x}^b \xrightarrow{\operatorname{Simplex}} \mathbf{x}^*$$

- A good starting basis is essential for the solution of large problems
- The Idiot crash is a heuristic aiming to improve feasibility
- Implemented by John Forrest in CLP
- Seeking primal feasibility prior to primal simplex

$$\mathbf{x}^0 \xrightarrow{\operatorname{Crash}} \mathbf{x}^k \xrightarrow{\operatorname{Crossover}} \mathbf{x}^b \xrightarrow{\operatorname{Simplex}} \mathbf{x}^*$$

- No documentation but the code
 - John Forrest: "so bad that I called it the Idiot algorithm"
- At each iteration minimize a weighted average of objective and infeasibilities
- Looks like quadratic penalty function approach but...
 - Extra term in function minimized
- Looks like Augmented Lagrangian (AL) but...
 - Approximate minimization
 - Parameter adjustment
 - Other details

Augmented Lagrangian

• In iteration k

$$\mathbf{x}^{k+1} = rg \min_{\mathbf{x}} \mathcal{L}_{\mathcal{A}} = \mathbf{c}^{\mathsf{T}} \mathbf{x} - \boldsymbol{\lambda}^{\mathsf{T}} \mathbf{r}(\mathbf{x}) + \frac{\mu}{2} \mathbf{r}(\mathbf{x})^{\mathsf{T}} \mathbf{r}(\mathbf{x}),$$

- Residual vector $\mathbf{r}(\mathbf{x}) = \mathbf{b} A\mathbf{x}$
- Parameters μ and $\pmb{\lambda}$
 - λ_i corresponds to the i^{th} row
 - λ converge to the optimal Lagrange multipliers
- Adjust parameters

At start
$$\begin{vmatrix} A \text{fter some iterations } s \end{vmatrix}$$
 After some iterations $I = 10 \mu^{0}$
 $\lambda^{0} = 0 \quad \lambda^{s+1} := \lambda^{s} - \mu \mathbf{r}(\mathbf{x}^{s})$ After some iterations $I = 10\mu^{I}$

Alternating variables approach

•
$$\mathcal{L}_{A} = \mathbf{c}^{T}\mathbf{x} - \boldsymbol{\lambda}^{T}\mathbf{r}(\mathbf{x}) + \frac{\mu}{2}\mathbf{r}(\mathbf{x})^{T}\mathbf{r}(\mathbf{x})$$

- Singular Hessian
- Computationally expensive
- Alternating variables approach

- Approximate solution
 - Cheap
- repeated ≈ 100 times to improve accuracy

The Idiot Crash structure

```
Initialize \mathbf{x}^{0}, \mu^{0}, \lambda^{0} = \mathbf{0}

For l \in 1..nMajor

For i \in 1..nMinor

\forall j \in \{1..n\} \min_{x_{j}} h(\mathbf{x}) = \mathbf{c}^{T}\mathbf{x} - \lambda^{T}\mathbf{r}(\mathbf{x}) + \frac{\mu}{2}\mathbf{r}(\mathbf{x})^{T}\mathbf{r}(\mathbf{x})

end

Choose new \mu or \lambda

end
```

Every few major iterations μ is increased

At the end of each major iteration the values of λ or μ are re-adjusted:

- Start with μ^0 , $\lambda^0 = 0$, nMinor = 2
- At the end of each major iteration:
 - Until 10% reduction in primal infeasibility set $\mu^{k+1} = 10\mu^k$
- Set nMinor = 105
 - The first major iteration with a new μ , λ is unchanged
 - The next few major iterations set $\lambda_i^{k+1} = \mu r_i(\mathbf{x}^k)$
 - Increase μ and repeat
- λ converges to 0

- Not Augmented Lagrangian
- During initial major iterations μ is smaller so $\pmb{\lambda}$ ensures reducing primal infeasibility has enough weight

$$\min_{x_j} h(\mathbf{x}) = \mathbf{c}^T \mathbf{x} - \boldsymbol{\lambda}^T \mathbf{r}(\mathbf{x}) + \frac{\mu}{2} \mathbf{r}(\mathbf{x})^T \mathbf{r}(\mathbf{x}),$$

- Cycles through all columns
 - Random starting point
 - Alternating variables method
- Early termination of a major iteration is possible
 - Condition on moving average of expected progress

- An Augmented Lagrangian Method for Linear Programming Beale, Hattersley, James (1985)
- The LP dual active set algorithm Hager (1998)
- An approximate, efficient LP solver for LP rounding Sridhar, Wright et al (2013)
- Sparse linear programming via primal and dual augmented coordinate descent
 Van Zhang et al. (2015)

Yen, Zhong et al (2015)

- Generally useless
 - Single variable change limitation
- Solves Quadratic Assignment Problems (QAPs)
 - Combinatorial optimization problem, special case of facility location
 - Well known for being hard to solve
 - The Idiot crash reduces linearisation solution time significantly
 - Many zero Lagrange multipliers

Quadratic Assignment Problems

QAP12 Solution time (s)

QAP15 Solution time (s)

nMajor

nMajor

- Residual error $\approx 10^{-4}$ The Idiot crash on QAPs
- Residual error $\approx 10^{-1}$ An approximate, efficient LP solver for LP rounding Sridhar, Wright et al (2013)
- $\bullet~{\rm Residual~error}\approx 10^{-3}$

Sparse linear programming via primal and dual augmented coordinate descent

Yen, Zhong et al (2015)

Change in objective value

Iteration	Penalty	Idiot	AL	
0	0	0	0	
1	449.307	449.307	0	
2	447.728	447.672	4.759	
3	446.731	446.676	0	
4	520.996	520.936	236.608	
5	519.322	519.324	110.543	
6	518.447	518.448	492.086	
7	527.641	527.642	457.191	
9	527.391	527.393	530.405	

Penalty method vs Idiot vs Augmented Lagrangian objective value

Quadratic Assignment Problems

QAP12 Solution time (s)

QAP15 Solution time (s)

nMajor

nMajor

Idiot alone

 $\begin{array}{ll} \min & f_P = \mathbf{c}^T \mathbf{x} \\ \text{s.t.} & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array} \tag{P}$

$$\begin{array}{ll} \max & f_D = \mathbf{b}^T \mathbf{y} \\ \text{s.t.} & A^T \mathbf{y} \leq \mathbf{c} \end{array} \quad (\mathsf{D}) \end{array}$$

Idiot applied to (P)

- Primal feasible
- Objective $f_P \ge f^*$
- Near-optimal, but not provably

Idiot applied to (D)

- Dual feasible
- Objective $f_D \leq f^*$

- Branch & bound tree
- LP problems at each node
- Lower bounds on f^*
 - Allow for pruning

- Branch & bound tree
- LP problems at each node
- Lower bounds on f^*
 - Allow for pruning

				Time (s)		
Problem	LB	UB	f^*	Bounds	Idiot+Crossover	Simplex
qap08	141.39	204.57	203.50	0.55	0.61	1.80
qap12	481.50	523.60	522.89	3.85	12.64	65.21
qap15	950.05	1042.05	1040.99	11.53	64.48	803.30

- QAPs require integer solution to linearization
- Fast bounds on f^* accelerate branch & bound algorithms

- Finding a good starting basis beneficial but difficult
- The Idiot crash is somewhere between a quadratic penalty function method and an Augmented Lagrangian method
- Limitations
 - Sensitive to parameters
 - Can have disastrous effects
 - Single variable change
- Effective on some problems
- Scope for accelerating B&B